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Abstract
An important energy supplier of cardiomyocytes is mitochondria, similar to other mammalian cells. Studies have demon-
strated that any defect in the normal processes controlled by mitochondria can lead to abnormal ROS production, thereby 
high oxidative stress as well as lack of ATP. Taken into consideration, the relationship between mitochondrial dysfunction 
and overproduction of ROS as well as the relation between increased ROS and high-level release of intracellular labile Zn2+, 
those bring into consideration the importance of the events related with those stimuli in cardiomyocytes responsible from 
cellular Zn2+-homeostasis and responsible Zn2+-transporters associated with the Zn2+-homeostasis and Zn2+-signaling. 
Zn2+-signaling, controlled by cellular Zn2+-homeostatic mechanisms, is regulated with intracellular labile Zn2+ levels, 
which are controlled, especially, with the two Zn2+-transporter families; ZIPs and ZnTs. Our experimental studies in mam-
malian cardiomyocytes and human heart tissue showed that Zn2+-transporters localizes to mitochondria besides sarco(endo)
plasmic reticulum and Golgi under physiological condition. The protein levels as well as functions of those transporters 
can re-distribute under pathological conditions, therefore, they can interplay among organelles in cardiomyocytes to adjust 
a proper intracellular labile Zn2+ level. In the present review, we aimed to summarize the already known Zn2+-transporters 
localize to mitochondria and function to stabilize not only the cellular Zn2+ level but also cellular oxidative stress status. In 
conclusion, one can propose that a detailed understanding of cellular Zn2+-homeostasis and Zn2+-signaling through mito-
chondria may emphasize the importance of new mitochondria-targeting agents for prevention and/or therapy of cardiovascular 
dysfunction in humans.
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Introduction

Mitochondria, similar to most mammalian cells, occupy the 
large part of a cardiomyocyte and play vital roles in alive 
cells. Under physiological conditions, mitochondria mainly 
function to provide the required energy to the beating heart 
via producing ATP through oxidative phosphorylation [1–7]. 
Therefore, those abundant mitochondria maintain the energy 
need of cells, as a perfect ATP source, to support contrac-
tion, metabolism, and ion homeostasis in cardiomyocytes. 

Since cell metabolic activity besides energy is derived from 
mitochondria under physiological conditions, therefore, 
mitochondrial dysfunction is considered to be a therapeutic 
target for pathological conditions including cardiac dysfunc-
tion [8]. Any abnormalities in mitochondrial fission–fusion 
dynamics (i.e. altered expression of mitochondrial proteins) 
and bioenergetics can lead to cardiovascular diseases [9, 10]. 
In other words, mitochondrial dysfunction, including struc-
tural and metabolic alterations, contributes to heart diseases 
besides others.

Studies pointed out that oxidative stress is the main 
molecular mediators of heart diseases in patients and experi-
mental animals while these mediators regulate both the deg-
radation and remodeling processes in the heart [7, 11]. In 
that regard, it has been shown that not only reactive oxygen 
species (ROS) but also reactive nitrogen species (RNS) play 
important in the development of cellular abnormalities such 
as defective Ca2+-handling (causing cardiac arrhythmia) as 
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well as inducing hypertrophic signaling, apoptosis, and 
necrosis [12–15]. Often, these alterations are caused by 
genetic mutations in mitochondrial DNA [16]. In line with 
that statement, now, it is also well known that mitochondrial 
dysfunction and associated ROS over-generation lead mainly 
to extensive oxidative stress and less ATP production, which 
in turn causes the activation of mitochondrial-driven cell 
death via the opening of mPTP [8, 17, 18].

We, previously, have shown that Zn2+ is releasing into 
the cytosol during the cardiac excitation-contraction cycle 
in a manner of both Ca2+ and redox-dependent and can trig-
ger ROS production via inducing changes in metal-binding 
properties of metallothioneins [19, 20]. Furthermore, over 
ROS production can induce a high level of intracellular Zn2+ 
releases under pathological stimuli such as hyperglycemia 
and/or exposure directly to oxidants [21–25]. Indeed, we 
demonstrated that disturbances in cellular Zn2+ levels in 
cardiomyocytes could contribute and/or exacerbate heart 
dysfunction observed under chronic hyperglycemic condi-
tions [18, 26–28].

It has been also shown that a significant increase in intra-
cellular free Zn2+ could induce marked increases in mito-
chondrial matrix/cristae area and matrix volume together 
with increased lysosome numbers in mammalian cardiomyo-
cytes. Also, there were notable clustering and vacuolated 
mitochondrion markedly disrupted and damaged myofibrils 
and electron-dense small granules with some implications of 
fission-fusion defects in the mitochondria in those cells [18, 
26]. In terms of functional changes in those Zn2+ exposed 
cardiomyocytes, there was marked depolarization in mito-
chondrial membrane potential as well as a high level of 
ROS production [28, 29]. Those findings are highlighting 
the close association between cellular free Zn2+ level, oxi-
dative stress, and mitochondrial function in cardiomyocytes 
under not only pathological stimuli but also for their physi-
ological function.

Therefore, a better understanding of this cellular cross-
talk might help to develop new ways to prevent and/or treat 
heart diseases. Under the light of this hypothesis, here, 
we aimed to document and discuss the current data in this 
subject.

Labile Zn2+ plays an important role 
in the regulation of cardiac cell function

Both experimental and clinical studies demonstrate that 
impairment of Zn2+-homeostasis leads to alterations in the 
body which leads to induce a variety of health problems 
[30–32]. Among them, zinc-deficiency can affect human 
health, including cardiovascular function among others 
[33–35]. However, there are some controversies related 
to the labile Zn2+ role in mammalian cells, particularly in 

cardiomyocytes, such as its opposing effects. The recent 
and early studies indicate that Zn2+ is a co-factor for sev-
eral enzymes in the antioxidant defense system, thereby, 
protects cells against oxidative damage [31, 36–41]. Also, 
Zn2+ acts in the stabilization of membranes inhibit the 
enzyme nicotinamide adenine dinucleotide phosphate 
oxidase (NADPH-Oxidase), a pro-oxidant enzyme, and 
induces metallothionein synthesis [42]. However, studies 
also emphasized that elevated intracellular labile Zn2+ is 
toxic for cardiomyocytes similar to those of other cells, 
through essentially its action on the modulation of protein 
gene expression and mitochondrial and SER functions [26, 
28, 29, 43–45].

Correspondingly, it is reported that an optimal ratio of 
labile Zn2+ level to labile Ca2+ level in cytosol and mito-
chondria can be preserved to combat oxidative stress by 
the protection of cardiomyocyte-injury by different stimuli 
including high Zn2+ through a well-controlled mitochondrial 
function [46–49]. Of note, it has been previously shown that 
the total intracellular labile Zn2+ level in ventricular cardio-
myocytes is less than 1-nM in both rat and rabbit ventricular 
cardiomyocytes under physiological conditions [45, 50, 51]. 
Under pathological conditions, including hyperglycemia, 
hyperinsulinemia, and aging as well as acute oxidant expo-
sures, its level can increase either over twofold or 30-fold 
[19, 20, 25, 29, 45, 48, 50]. Together, it should be empha-
sized that there are important cellular toxicity of high intra-
cellular labile Zn2+ in cardiomyocytes and this type of toxic-
ity can in turn lead to the Ca2+ dyshomeostasis, impairment 
in excitation-contraction coupling as well as mitochondrial 
dysfunction. These alterations will result from important 
elevation in the production of ROS and/or RNS, apoptosis, 
and cell death in cells including cardiomyocytes [19, 26, 28, 
39, 45, 52–56]. Although the exact molecular mechanisms of 
high intracellular labile Zn2+ toxicity in cells, its interactions 
with cysteinyl thiols of proteins thereby its participation in 
the redox reactions seems to be at most its molecular effect 
in ventricular cardiomyocytes [21, 26]. Furthermore, in our 
previous studies performed in heart preparations, we have 
shown that all these toxic changes and damages via high 
intracellular labile Zn2+ in tissue and cell levels were at most 
associated with increases in not only ROS but also RNS 
levels. Correspondingly, the light and electron microscopy 
examinations of cardiomyocytes incubated exposed to high 
Zn2+ demonstrated clear hypertrophy in cardiomyocytes, 
and increased numbers of lysosomes and lipid droplets in 
the interstitial area, besides markedly disrupted and dam-
aged myofibrils [18, 26]. Therefore, it seems that intracel-
lular high Zn2+ toxicity is closely associated with increased 
oxidative stress, while increased oxidative stress can induce 
further increase in intracellular labile Zn2+ through Zn2+ 
release from subcellular stores [28, 45, 57]. Altogether, one 
can propose that increased intracellular Zn2+ is leading to 
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the induction of deleterious changes to stimulate different 
cardiac dysfunction [25, 28, 57, 58].

Two faces of zinc in biological systems: Zinc 
and oxidative stress

Zinc is not only a co-factor for many enzymes involved in 
the physiological role of the antioxidant defense system but 
also protects cells against oxidative damage through sta-
bilizing the homeostasis of several intracellular pathways. 
Among its activities, it plays an important role in restor-
ing impaired energetic metabolism via the stabilization of 
membranes, ionic homeostasis as well as it mediates the 
phosphorylation and oxidation of several proteins, kinases, 
and enzymes [25, 59, 60]. Studies also have shown that it 
plays an important role in the conversion of two superox-
ide radicals to hydrogen peroxide and molecular oxygen, 
reducing the toxicity of ROS [61]. However, we and others 
demonstrated its toxic effect that an increase in intracellular 
labile Zn2+ level can elevate in cardiomyocytes by ROS/RNS 
through in a process dependent on Zn2+ release from intra-
cellular stores [31, 45, 53, 62]. Correspondingly, through 
the contribution of elevated ROS/RNS to the damage and 
dysfunction in cardiomyocytes, one can interpret why there 
is a close relationship between increased intracellular labile 
Zn2+ level and deleterious changes in several signaling path-
ways in the heart [18, 21, 25, 26, 28, 45, 53, 62].

Similar to the intracellular Ca2+-homeostasis, the intra-
cellular Zn2+-homeostasis is dynamically maintained by a 
variety of proteins, kinases, and enzymes as well as sharing 
the same intracellular stores which are distributed in distinct 
cellular compartments of cardiomyocytes [9, 19, 47, 57, 63]. 
Those actors responsible for the homeostasis, are very sensi-
tive to increased oxidative stress in cell levels.

Although Zn2+ itself is not a direct redox-active element, 
it plays an important and complex interplay in many cells 
including cardiomyocytes [45]. It has been shown modula-
tion of intracellular labile Zn2+ level in cells by the redox 
state (i.e. increased ROS) [64]. Together with that property, 
it increases the antioxidant capacity of the cells as well 
as it can lead to the release of toxic ROS [21, 65], well-
acceptable evidence of its two faces properties. Therefore, 
it has both properties in the antioxidant network and redox-
regulated signaling in cells [66]. It has been demonstrated 
that labile Zn2+-coordination environments with cysteine 
ligands oxidizing the sulfur-ligands together with reducing 
with concomitant release and binding of labile Zn2+ [45, 53, 
65, 67]. Moreover, early studies have been demonstrated that 
high intracellular labile Zn2+ elevates ROS in living cells 
by activating the enzyme nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase [67, 68]. Besides, in another 
study, it has been shown that labile Zn2+ can protect cells 

against oxidative damage through acting on the stabilization 
of membranes and inhibiting NADPH-oxidase, which is a 
pro-oxidant enzyme and induces metallothionein synthesis 
[69–71]. Besides, other studies mentioned that it can act 
as an antioxidant by affecting the expression of glutamate-
cysteine ligase to neutralize free radicals directly or indi-
rectly [72–74]. Under hyperglycemic conditions, such as dia-
betes, studies demonstrated zinc-associated improvements in 
insulin sensitivity and glycemic control through reduction 
of the synthesis of ROS, thereby inhibiting the activation of 
oxidative stress pathways [75]. Those studies emphasized a 
zinc-favorous action on glucose transport into the cells [76, 
77]. Together, hyperglycemic cardiomyocytes had high basal 
labile Zn2+, being associated with increased levels of not 
only increased ROS but also increased RNS in those cardio-
myocytes [28, 78]. Furthermore, we have demonstrated that 
an antioxidant application could provide a balanced oxidant/
antioxidant level in the heart due to the prevention of the 
altered cellular redox state, though directly normalization of 
macromolecular complex responsible for both intracellular 
Ca2+- and Zn2+-homeostasis in hyperglycemic cardiomyo-
cytes from the diabetic rats [25]. Studies emphasized how it 
is important to maintain an adequate concentration of zinc 
in the cell compartments for the essentiality of the proper 
functioning of the antioxidant defense system. Moreover, 
oxidative stress appears to be capable of altering the expres-
sion of proteins responsible for the Zn2+-homeostasis [79].

The ion Zn2+ can act as a pro-oxidant when its concentra-
tion is either deficient or in excess and becomes pro-inflam-
matory and pro-apoptotic, whereas it has an important role 
in the antioxidant defense system through regulation of glu-
tathione peroxidase and in the expression of metallothionein, 
as well as it is a co-factor for superoxide dismutase. Interest-
ingly, it has been also shown that a low zinc concentration 
could induce an important level of oxidative stress which 
further leads to cell death and promotes the production of 
ROS [80, 81]. It is noteworthy that, zinc as a multifunctional 
micronutrient, intracellular labile Zn2+ in biological systems 
has two faces, particularly under pathophysiological condi-
tions, at most, depends on its level.

Labile Zn2+‑mediated alterations 
in cardiomyocytes through its 
phosphorylation and oxidation actions 
of intracellular proteins

Several in vivo and in vitro studies strongly indicate that 
systemic and cellular Zn2+-homeostasis are important pro-
cesses in mammalian life and are controlled with different 
regulatory proteins. Intracellular labile Zn2+ in cardiomyo-
cytes has multiple functions to provide cardioprotection in 
the preventions of different pathological conditions in the 
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heart. Although zinc is important against oxidative stress 
and cytoprotection processes in the heart, its role in induc-
tion together with regulation of proteins remains largely not 
known yet. Correspondingly, we have shown that hyper-
glycemic cardiomyocytes from experimental diabetic rats 
have higher resting intracellular labile Zn2+ level, linking 
increased both ROS and RNS levels in those cardiomyo-
cytes [25, 28, 57]. In further observations, we determined a 
marked decrease in the activity of protein phosphatase 1 and 
2A, a significant increase in the phosphorylation levels of 
extracellular signal-regulated kinase1/2, RyR2, and acces-
sory protein of RyR2 macromolecular complex, FKBP12.6, 
as well as protein kinase A (PKA) and calcium calmodulin 
kinase II (CaMKII). To confirm the high intracellular labile 
Zn2+ induced changes in those proteins and kinases, we 
performed in vitro studies with rat ventricular cardiomyo-
cytes incubated with either a zinc-ionophore of 1-hydroxy 
pyridine-2-thione or ZnCl2. Then we determined first the 
phosphorylation levels of RyR2 and FKBP12.6 and then the 
phosphorylation levels of PKA and CaMKII together with 
activation in transcription factors such as NFκB and GSK 
and other endogenous actors such as Akt [25, 26]. There 
were marked increases in the phosphorylation levels of those 
proteins and kinases in those incubated cells. In early stud-
ies, we have also demonstrated that either high labile Zn2+ or 
increased oxidative stress could induced markedly increased 
levels of oxidation in protein thiols [21, 45, 66, 82]. Further 
studies supported our above results. They have shown that 
high intracellular labile Zn2+ inhibits the activity of adenylyl 
cyclases, the hormone, and forskolin stimulation of cAMP 
synthesis in N18TG2 cells [83]. It also caused inhibition of 
substrate phosphorylation by CaMKII such as to produce 
a concentration-dependent inhibition of phospholamban 
phosphorylation in the presence of Ca2+ and calmodulin 
[84]. Those above observations, under in vivo and in vitro 
high Zn2+ conditions, further supported the hypothesis that 
a Zn2+-disbalance could affect different signaling pathways 
resulting in several cellulars in different signaling networks. 
Among them, the critical roles of intracellular high labile 
Zn2+ in the redox signaling pathway together with its role in 
maintaining the normal structure and physiology of cellular 
actors should be one of the main reasons besides others [53, 
85–90]. Supporting to those data, early studies mentioned 
that Zn2+ has multiple functional effects on kinases includ-
ing PKC and cAMP-dependent protein kinase [91].

Overall, one can propose that intracellular high labile 
Zn2+ in cardiomyocytes under pathological conditions, 
seems to be closely associated with alterations in several 
cellular proteins, responsible for higher levels of phospho-
rylation and oxidation of the actors of this machinery as well 
as a high level of ROS and RNS. Therefore, it can be sum-
marized that an intracellular labile Zn2+ level is modulated 
by the redox state of the cells (being associated with the 

levels of both ROS and RNS [92]. Indeed, zinc-coordination 
environments with cysteine ligands have a property in which 
the sulfur-ligands can be oxidized and then reduced with 
concomitant release and binding of labile Zn2+ while it is 
about 30% buffering capacity emanates from sulfur donors 
(thiols), serving as redox buffer capacity [92, 93]. However, 
all the above effects strongly are depending on its level in 
cells. Zn2+ can increase the antioxidant capacity of the cells 
beside it can lead to the release of toxic ROS [19, 28, 45]. 
So far, the cellular toxicity of excess labile Zn2+ in cardio-
myocytes can induce a dyshomeostasis in intracellular labile 
Ca2+, and thereby, an impairment in excitation-contraction 
coupling, as well as high-level production of ROS and/or 
RNS and loss of signaling quiescence leading to apoptosis 
in cells and cell death [19, 39, 45, 53, 54, 94, 95].

Zn2+‑transporters mediate the control 
of cellular Zn2+ among intracellular 
compartments of cardiomyocytes

Together, our studies and literature data performed in mam-
malian tissues as well as human heart tissues provide strong 
evidence for two faces of zinc as a supplement or toxic 
through intracellular labile Zn2+ in the function of organs 
under physiological and pathological conditions, includ-
ing diabetes, metabolic syndrome or obesity [18, 26, 28, 
54, 96–100]. Correspondingly, studies have shown how 
low levels of zinc have adverse effects on physiological 
and metabolic functions (particularly linked to obesity) in 
humans as well as its high levels are detrimental to organs 
including the heart [18, 19, 28, 47, 54, 96]. Today, it is well 
documented that cellular homeostasis of labile Zn2+ is regu-
lated and controlled efficiently with two families of specific 
Zn2+-transporters. One family named SLC39A family has 14 
members and functions to carry labile Zn2+ into the cytosol 
in cells (ZIPs) whereas the second family is the SLC30A 
family which has 10 members and carries labile Zn2+ out 
off cytosol (ZnTs). Alterations in their expression and/or 
localization can lead to intracellular labile Zn2+ homeosta-
sis which can underline several pathophysiological stimuli 
further leading to cellular damages [48, 57, 95, 101, 102]. 
Also, there is a close correlation between alterations in intra-
cellular labile Zn2+ level and progression of many diseases 
including heart diseases, therefore, alterations in expression 
and/or function of any Zn2+-transporters can be one of the 
reasons for the development of diseases in mammalians. 
This event is a strong clue why those transporters are play-
ing important roles in a human health situation.

ZIPs are expressed in different cell types in mammalians 
which regulate intracellular free Zn2+ and have crucial roles 
in physiology and pathophysiology. It is shown that ZIP1 
[103–108], ZIP2 [107–110], ZIP3 [107–110], ZIP7 [57, 79, 
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111–116] and ZIP8 [79, 105, 115, 117–119] are identified in 
widespread mammary tissues and cells. Besides, ZIP4 pro-
tein is found in skin, chondrocytes, odontoblasts, fibroblast, 
pancreas, gastrointestinal tract, kidney, and hippocampal 
neurons [120–123], ZIP5 is found in the pancreas, kidney, 
liver, stomach, intestine, and hepatocytes [120–123], ZIP6 is 
fouınd in several cancer tissues, neuroblastoma cells, T lym-
phocytes, peripheral blood mononuclear cells [124–130], 
while ZIP9 is fouınd in the prostate, HeLa cells [131, 132]. 
ZIP10 has been shown in testis, kidney, breast, pancreatic 
α-cells [118, 119, 133–136], whereas ZIP11 is found in testis 
and digestive system, glands [110, 137, 138]. Further studies 
have shown that ZIP12 is found in the brain, lung, testis, and 
retina, neurons, endothelial, smooth muscle, and intersti-
tial cells [110, 139, 140], while ZIP13 is found in bone, fat 
and adipose tissue, and also in hepatocytes [115, 141–143]. 
The last member of the ZIPs family, ZIP14 has been shown 
in bone and adipose tissue [79, 115, 135, 144–147]. The 
expressions of ZIP7, ZIP8, and ZIP14 have also been shown 
in hepatocytes and heart, as well [29, 148].

In mammalian tissues and cells, it has been identified 
10 ZnTs in that member, which are responsible for Zn2+ 
efflux from the cytosol in cells. ZnTs are expressing in dif-
ferent types of tissues and cells including the brain, liver, 
gut, fat, heart, intestine, stomach, prostate, retina, pancreas, 
testis, muscle, and many types of cells including secretory 
cells and pancreatic β-cells. Studies demonstrated that ZnT1 
presents in peripheral blood mononuclear cells [104–107, 
130, 149, 150], whereas ZnT2 is found in the mammary 
gland, prostate, retina, pancreas, small intestine, and kidney 
[103–107, 110], ZnT3 is found in prostate glands [106, 107, 
109, 110, 151], while ZnT4 is found in various tissues such 
as skin, chondrocytes, odontoblasts and fibroblast, pancreas, 
gastrointestinal tract, kidney, and hippocampal neurons 
[120–123, 141], ZnT5 is found in bone and heart [79, 105, 
123, 152, 153]. ZnT6 is generally found in cancer tissues, 
and neuroblastoma cells, T lymphocytes, peripheral blood 
mononuclear cells [124–126, 128–130]. ZnT7 is found in 
different main organ tissues such as the brain, liver, gut, fat, 
heart, intestine, stomach, prostate, retina, pancreas, testis, 
muscle, and many types of cells including secretory cells, 
pancreatic β-cells [29, 48, 57, 111, 112, 116, 154–159]. 
ZnT8 is found in the pancreas, thyroid, heart, testis, and 
several cell types including cardiomyocytes, islet cells, pan-
creatic cells, endocrine cells, adrenal glands, insulin gran-
ules, pancreas, thyroid, adrenal gland [48, 57, 159–170]. The 
last two members of that family, ZnT9 is found in prostate, 
brain, muscle, kidney, HeLa cells [131, 171, 172], while 
ZnT10 is found in testis, kidney, breast, pancreatic α-cells, 
red blood cells, brain, liver, erythroid, and kidney [118, 119, 
133–135, 173, 174].

Labile Zn2+ is not only an essential structural constituent 
of many intracellular actors but also it has a central role in 

excitation-contraction coupling in cardiomyocytes. There-
fore, any change in its physiological range could initiate 
induction of deleterious changes directly and/or indirectly 
in the heart [19, 45, 53]. In those considerations particu-
larly in recent years, there are some research and review 
articles mentioned why Zn2+-transporters are important 
for several organ proper functions in mammalians through 
being responsible for the re-distribution of subcellular labile 
Zn2+ levels at cell levels. For instance, in the last 5 years, 
it is published over 200 articles focused on the impact 
of Zn2+-transporters in health and disease [47, 48, 102, 
175–188].

The already shown roles of already known several 
Zn2+-transporters (for sure not all) are summarized in 
Tables 1 and 2 with their references. The phenotypes of those 
Zn2+-transporters knockout mice and variants have been also 
characterized in mammalian tissues and cells [117, 189–191] 
and the results of early studies on Zn2+-transporters are 
under consideration particularly during the last 20 years 
[106, 110, 177, 179–181, 183, 192–198].

Structure and function of mitochondria 
in cardiomyocytes under pathophysiological 
conditions via high intracellular labile Zn2+

Mitochondria in the mammalian heart are the major sources 
of the high-energy compound, ATP, which have multiple 
activities, and one of the vital organelles in eukaryotes 
including cardiac cells, as well [2, 6, 218]. Mitochondria 
are classified as either subsarcolemmal or interfibrillar in 
cardiomyocytes. There are two aqueous spaces such as the 
intermembrane space and the matrix of two lipid bilayer 
membranes, while the outer membrane has a role as the 
boundary between the cytoplasm and mitochondria. Impor-
tantly, that part contains multiple receptors and transporters 
to perform communication between mitochondria and other 
organelles, such as Sarco(endo)plasmic reticulum, SER, as 
well as cytoplasm [171, 219–221]. The morphology of car-
diac mitochondria, as well as their physiology, is available 
to support the cell viability under different pathological situ-
ations, such as diabetes or aging [25, 27, 29]. Correspond-
ingly, studies emphasize a close apposition between SER 
and mitochondria representing a key platform responsible 
for the regulation of different fundamental cellular pathways 
under physiological conditions, including redox-regulation 
of the cells [222]. Studies imply that any alteration in the 
SER-mitochondria axis can cause an onset and progression 
of several diseases, including cardiovascular disorders [29, 
48, 223, 224].

Mitochondria play a central role in the heart homeo-
stasis in mammalians. In general, electron microscopy of 
analysis of cardiac mitochondria showed that they have an 
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elliptical shape with either lamelliform or tubular numerous 
transverse cristae. They have also numerous sharp angula-
tions, mall dense granules which are deposits of divalent 
cations present in the mitochondrial matrix [225]. The Zn2+ 
is required in the matrix of the mitochondria for the function 
of proteins and special ion transporters within mitochondrial 
compartments [226–232]. Labile Zn2+ is detected in the 
mitochondria of mammalian neuronal cells [231], which is 
compartmentalized into the mitochondrial membrane [231] 
associated with release from that compartment further lead-
ing to cell death [229].

It can be stated that labile Zn2+ can be detected in 
the mitochondria of mammalian cardiac cells using 
Zn2+-responsive fluorophores [47, 50, 230] [. Although the 
mitochondrial labile Zn2+ is low compared to either cytosol 
or SER in cardiomyocytes under physiological conditions, 
it can increase over normal values under pathological condi-
tions, including hyperglycemia [47]. Even early studies men-
tioned the toxic effects of elevated intracellular labile Zn2+ 
for mammalian cells through its action on the modulation 
of gene expression and mitochondrial function [43, 45, 233, 
234]. Furthermore, it has been pointed out the importance of 
an optimal range for the ratio of intracellular Zn2+ to Ca2+ in 
both cytosol and mitochondria to protect cardiomyocytes via 
controlling oxidative stress through regulation of mitochon-
drial function with Zn2+ [46, 235]. Additional studies have 
also shown a close association between elevated cytosolic 
labile Zn2+ and impairment of mitochondrial respiration 
under pathological stimuli in mammalian cells [235, 236].

Some studies indicate that there is a close relation 
between mitochondrial Zn2+ and mitochondrial membrane 
potential in either neurons or cardiomyocytes [28, 47, 228, 
230]. It is an interesting process that any disruption of 

mitochondrial membrane potential results in the release of 
Zn2+ to the cytosol whereas high labile Zn2+ can induce 
serious disruption of mitochondrial membrane potential in 
those cells. This release of mitochondrial labile Zn2+ can be 
a contributing cause of cellular damage and/or death during 
pathological stimuli [28, 229]. Interestingly, Dineley and 
co-workers [237] have shown a loss of membrane potential 
and elevation of ROS in rat brain mitochondria by high Zn2+. 
One of the impacts of combined effects of labile Zn2+ and 
Ca2+ is on the openings of mitochondrial permeability tran-
sition pore and increased the production of ROS, which are 
also closely associated with the induction of ER stress and 
apoptosis [238, 239]. Likely, the mitochondrial membrane 
potential is known to be not only an important driving force 
for ATP production during oxidative phosphorylation, but 
also for the mitophagy, and for the transport of proteins and 
ions such as Ca2+ and Zn2+ in cells including cardiomyo-
cytes [10, 18, 29, 48, 240].

Zinc is generally as Zn2+ in biological macromolecules 
of mammalian cells [31, 36, 38, 39], however, it can be very 
toxic to most living cells when they expose to it beyond its 
normal physiological levels [28, 45, 241]. Being one of the 
most affected organelles, mitochondria in cardiomyocytes 
have detectable labile Zn2+ besides labile Ca2+ [27, 29, 48]. 
Although mitochondrial labile Zn2+ level is low compared 
to the cytosol and SER in cardiomyocytes it can get very 
high under pathological conditions, such as hyperglyce-
mia and hyperinsulinemia as well as aging [10, 47, 48, 50]. 
Exposure to high Zn2+ and/or increases in intracellular labile 
Zn2+ via different signaling stimuli can increase the mito-
chondrial labile Zn2+ level while it, in turn, induces serious 
increases in ROS production and decreases in ATP level of 
cardiomyocytes [18, 47, 48]. More importantly, we, here and 

Table 1   Distribution of Zn2+-transporters in mammalian tissues/cells responsible of Zn2+-influx into cytosol (ZIPs)

Names of proteins Types of tissues/Cells References

ZIP1 Widespread mammary tissues and cells [103–108]
ZIP2 Widespread mammary tissues and cells [103–105, 107, 108]
ZIP3 Widespread mammary tissues and cells, prostate glands [107–110]
ZIP4 Skin, chondrocytes, odontoblasts and fibroblast, pancreas, gastrointestinal tract, kidney, and hip-

pocampal neurons
[120–123]

ZIP5 Pancreas, kidney, liver, stomach, and intestine, hepatocytes [79, 105, 153, 264]
ZIP6 several cancer tissues, neuroblastoma cells, T lymphocytes, peripheral blood mononuclear cells [124–130]
ZIP7 Widespread mammary tissues and cells, hepatocytes, cardiomyocytes [57, 79, 111–116]
ZIP8 Widespread mammary tissues and hepatocytes, red blood cells, [79, 105, 115, 117–119]
ZIP9 Prostate, HeLa cells [131, 132]
ZIP10 Testis, kidney, breast, pancreatic α cells, red blood cells, brain, liver, erythroid, and kidney [118, 119, 133–136]
ZIP11 Testis and digestive system, glands [110, 137, 138]
ZIP12 Brain, lung, testis, and retina, neurons, endothelial, smooth muscle, and interstitial cells [110, 139, 140]
ZIP13 Bone, fat tissue, adipose tissue, hepatocytes [115, 141–143]
ZIP14 Bone, adipose tissue, bone, liver, heart, placenta, lung, brain, pancreatic α-cells [79, 115, 135, 144–147]
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previously, have shown that exposure to high Zn2+ induced 
marked increases in mitochondrial matrix/cristae area and 
matrix volume together with an increased lysosome in car-
diomyocytes [26, 179]. Together, the notable clustering and 
vacuolated mitochondrion markedly disrupted and damaged 
myofibrils, and electron-dense small granules were observed 
in Zn2+-exposed cardiomyocytes [26]. Those changes were 
also including notable increases in mitochondrial matrix/
cristae area and matrix volume, together with some signs 
indicating fission-fusion defects in the mitochondria, in 
a manner of its concentration-dependent [26]. High Zn2+ 
exposure also caused a marked depolarization in mitochon-
drial membrane potential, as well [28, 29, 48]. Additional 

studies have also shown a close association between intra-
cellular high labile Zn2+ and impairment of mitochondrial 
respiration in a variety of pathological conditions in mam-
malian cells [235, 236]. One can state that if intracellular 
labile Zn2+ gets over its physiological level, it can stimulate 
one or more deleterious changes, such as marked altera-
tions in mitochondrion morphology and function as well as 
marked changes in the phosphorylation/oxidation levels of 
cytosolic signaling proteins [47, 48]. Moreover, it has been 
demonstrated that both extra-and intracellular high-level 
Zn2+ modulates L-type Ca2+-channel properties, as well 
as its regulation by β-adrenergic agonists independently of 
altering the cellular redox status but associated with cellular 

Table 2   Distribution of Zn2+-transporters in mammalian tissues/cells responsible for Zn2+-efflux of cytosol (ZnTs)

Names of 
proteins

Types of tissues/Cells References

ZnT1 Widespread mammary tissues and 
cells, Peripheral blood mononu-
clear cells

[104–107, 130, 149, 150]

ZnT2 Widespread mammary tissues and 
cells, Mammary gland, prostate, 
retina, pancreas, small intestine, 
and kidney

[103–107, 
If one wants to give challenging examples on Zn2+-transporters it will include the involvement 

of ZnT1, ZIP4, and ZIP5 in intestinal zinc-transport, the involvement of ZIP10 and ZnT1 in 
renal zinc-reabsorption, and the roles of ZIP5, ZnT2, and ZnT1 in the pancreatic release of 
endogenous-zinc in the handling of dietary-zinc [193]. Further studies demonstrated the major 
factors in the regulation of Zn2+-homeostasis such as theinvolvement of ZnT2 in lactation, 
ZIP14 in the hypozincemia of inflammation, ZIP6, ZIP7, and ZIP10 in metastatic breast 
cancer, and ZnT8 in insulin processing and diabetes [177, 179–181, 183, 196–198]. Moreo-
ver, Ellis et al. [199] demonstrated the important contribution of a cytosolic Zn2+-importer 
transporter, ZIP7 in releasing Zn2+ from the S(E)R, However, Huang et al. [111] showed the 
ZIP7 localization to the Golgi apparatus in CHO cells, while others demonstrated the roles of 
ZIP7 in the facilitation of Zn2+ release of from the ER and behaves as a critical component in 
the subcellular re-distribution of Zn2+ in cancer cells [200, 201]. Besides, ZnT7 was shown as 
a novel mammalian Zn2+-transporter, accumulates Zn2+ in the Golgi apparatus as well as into 
cytosol from S(E) R and mitochondria [29, 112, 202].

There are important data showed why changes in the expression and activity of different 
Zn2+-transporters have been directly linked to both systemic and organ level diseases, as well 
as rare diseases such as acrodermatitis enteropathica [114, 120, 124, 203, 204]. One group of 
highlighted studies on the role of Zn2+-transporters in health and disease includes the studies 
in the nervous system, including the role of high cytosolic Zn2+ and ZIP12 in neuronal dif-
ferentiation [139]. Similar to the above studies, it has been documented that ZnT3 is critical 
for the transport of Zn2+ into synaptic vesicles of a subset of glutamatergic neurons [205], 
and its expression is reduced in patients with Alzheimer’s disease [206] and Parkinson’s 
disease-related dementia [207]. However, it has been also shown the age-associated decreased 
ZnT3 expression and its role in the prevention of aging-related cognitive loss [197], while its 
expression level together with the level of ZnT1, ZnT4, ZnT5 in the prefrontal cortex in major 
depressive disorder and suicide [208, 209].

The second group highlighted studies related to Zn2+-transporters are mainly focused on Zn2+ 
and diabetes, in which ZnT8 is the Zn2+-transporter best studied in diabetes. ZnT8 is expressed 
in pancreatic beta cells and functions as a target autoantigen in diabetic patients [210–215]. In 
that regard, authors have shown ZIP4 can mediate Zn2+-influx stimulates insulin secretion in 
pancreatic beta cells [216], while not only ZIP4 but also ZIP14 were found to be involved in 
diabetes [114, 214, 216, 217].

The highlight of Zn2+, as an essential cell signaling molecule, can include its important roles in 
regulation not only in insulin signaling but also in the regulation of cellular homeostasis and 
physiological responses in mammalian cells. Correspondingly, it can be proposed that any 
alteration in those pathways can lead to dysfunctional cells with several disease states includ-
ing mainly neurological disorders, cancer, obesity, diabetes, and cardiovascular diseases.
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ATP level [93]. However, in an early study by Traynelis et al. 
demonstrated contradictory data demonstrating the inhibi-
tion of both L-type and T-type Ca2+ currents with high Zn2+ 
in neuronal cells [242]. Correspondingly, others had dem-
onstrated a more sensitivity of K+-channels to high Zn2+ 
than those of Na+-channels in neural cells [243], whereas a 
recent data has been shown activation of the M-type (includ-
ing Kv7 channels) K+-channels by high intracellular labile 
Zn2+ [244].

Here, we incubated ventricular cardiomyocytes with 
different zinc-compounds and using light and electron 
microscopy analysis, the heart tissue, and cardiomyocytes. 
The electron microscopy analysis showed that incubation 
of cardiomyocytes with a Zn2+-ionophore, Zn2+-pyrithione 
(ZnPT; 0.01-μM for 1-h) induced elongation in mitochondria 
leading to a significant increase in a sarcomere length, and 
clear irregular cristae appearance of mitochondrion located 
between myofibrils, together with electron-dense matrix 
(Fig. 1A, left). A tenfold increase in ZnPT concentration 
induced marked changes in the shapes of the mitochondria 
such as fragmentation, rounding, and swollen (Fig. 1A, 
middle). In incubation of the cells with the highest ZnPT 
concentration (1-μM), the mitochondria appeared more elec-
tron-lucent while the loss of the matrix density (Fig. 1A, 
right). When cardiomyocytes incubated with 10-μM ZnPO4 
(1-h), there was more disorganized mitochondrial cristae, 
and electron-lucent matrix, and partitioned mitochondria in 
the cells (Fig. 1B, left). The cardiomyocytes incubated with 
0.1 μM ZnCl2 (1-h), clustered mitochondria, slight intrami-
tochondrial edema, and enlargement of T-tubules and highly 
localized lysosomes were observed (Fig. 1B, right). In this 
regard, it has been demonstrated concentration-dependent 
Zn2+ inhibition of mitochondrial complex I [236], as well as 
Zn2+ entry into mitochondria via uniporter inducing mito-
chondrial dysfunction, at most, via ROS production and con-
tributing to mitochondrial Ca2+ deregulation [245].

As a consequence mentioned above paragraphs, the 
impaired mitochondrial function through exposure to high 
Zn2+ and/or increase intracellular labile Zn2+ might lead to 
several cardiovascular diseases. Therefore, one can empha-
size the importance of a well-controlled intracellular labile 
Zn2+ through the mitochondria as a novel therapeutic tar-
get for cardiac complications under pathological conditions 
including oxida​tive stres​s. Indeed, studies pointed out that 
cardiac mitochondria, similar to SER, also play an impor-
tant role in regulating not only Ca2+-homeostasis but also 
Ca2+-homeostasis via acting as a sponge to buffer both ions 
in cardiomyocytes [19, 21, 25, 29, 45, 48]. So far, it has 

been shown that both elevated labile ion levels such as Zn2+ 
and Ca2+ in the cytosol are deleterious in cardiomyocytes, 
and therefore their well-controlled levels in the cytosol are 
necessary to maintain a physiologic function of the heart. 
Supporting the last statement, we, recently, have shown that 
mitochondria played an important role to maintain cytosolic 
labile Zn2+ level though uptake high Zn2+ from cytosol 
increased due to high-level release from SER in hypergly-
cemic or hypertrophic ventricular cardiomyocytes [29, 48]. 
Therefore, one can interpret that mitochondria contribute to 
cellular Zn2+-muffling between cellular compartments under 
pathological conditions via affecting S(E)R-mitochondria 
coupling [246–250].

Distribution of Zn2+‑transporters 
in mitochondria of cardiomyocytes

Similar to others, there are several Zn2+-signaling pathways 
to control the intracellular Zn2+ homeostasis in cardiomyo-
cytes. Of note, the intracellular Zn2+-signaling can easily 
interfere with the Ca2+-signaling in cardiomyocytes, under 
both physiological and pathological conditions [19–21, 25, 
45, 58]. A piece of widespread information on cellular regu-
lation of cytosolic Zn2+-signaling through Zn2+-transporters, 
Zn2+-binding molecules, −fingers, and Zn2+-sensors in sev-
eral tissues and cell types are very well documented [96, 
111, 190, 193, 199, 200, 251–255], the distribution and 
function of those carries in subcellular organelles are not 
well clarified in cardiomyocytes yet.

Recently we and others have demonstrated that 
Zn2+-transporters induced developmental and physiologi-
cal defects in mammalians including cardiomyopathy in the 
heart [27, 29, 57]. Following demonstrating the distribution 
of labile in the cytosol, SER, and mitochondria of cardiomyo-
cytes using eCALWY probes [50] and the important roles of 
both ZIP7 and ZnT7 to mediate ER stress in hyperglycemic 
cardiomyocytes [57], we first demonstrated the subcellular 
localizations of ZIP8, ZIP14 and ZnT8 in cardiomyocytes 
besides ZIP7 and ZnT7 in cardiomyocytes [148]. By using 
the Huygens program for co-localization values of those trans-
porters, we calculated Pearson’s coefficients (PC) for ZIP8-
SER and ZIP8-sarcolemma as 44 ± 3% and 60 ± 2%, respec-
tively. The PC values of ZIP14 were 50 ± 8% and 42 ± 3% 
for SER and sarcolemma, while those PC values of ZnT8 
were 66 ± 3% and 80 ± 2% for SER and sarcolemma [148]. 
Those PCs strongly supported the high-level localization 
of those three Zn2+-transporters on sarcolemma ventricular 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/oxidative-stress
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cardiomyocytes. In the same study, authors demonstrated that 
the expression levels of ZIP14 and ZnT8 were significantly 
high in the human heart with serious failure, whereas ZIP8 
level was significantly low than those of controls, through, 
at most, increased oxidative and ER stress. Correspondingly, 
we have shown that the expression levels of ZIP7, ZnT7, and 
ZIP14 were decreased with no change in ZIP8 of high carbo-
hydrate diet-induced metabolic syndrome rat cardiomyocytes 
[102]. Furthermore, in our other study, there were significant 
increases in the expression levels of ZIP7, ZIP14, and ZnT8 
along with decreases in the ZIP8 and ZnT7 levels in the heart 
tissue from transverse aortic constriction model induced 
hypertrophic young rats [159, 202].

Recently, authors also studied the role and localization 
of Zn2+–transporters on mitochondria in aged ventricular 
cardiomyocytes. Together with high ROS level in those 
cells, the examination of the distribution of cellular labile 
Zn2+ among suborganelles, such as S(E)R and mitochon-
dria parallel to cytosolic labile Zn2+ showed that the cyto-
solic was markedly high, at most, due to increased ZIP7 
level with decreased ZnT7 level [48]. In that study, it was 
for the first time demonstrated that labile Zn2+ level in 
isolated mitochondria was significantly high while it was 
decreased in isolated SER, supporting the hypothesis of 
re-distribution of Zn2+–transporters under the pathologi-
cal condition to buffer the intracellular labile Zn2+ level. 

Fig. 1   The electron microscopy analysis of left ventricular cardio-
myocytes incubated with a Zn2+-ionophore, Zn2+-pyrithione, ZnPT 
(0.01-μM, 0.1-μM, or 1-μM for 1-h) (A; left, middle, right, respec-
tively), with 10-μM ZnPO4 (1-h; B, left), or with 0.1 μM ZnCl2 (1-h; 

B, right). Shorten symbols; m: mitochondria, arrow: Z-line, L: lyso-
some, N: nucleus, tailed arrow: partitioned mitochondrion, arrow-
head: T-tubule, asterisk: intramitochondrial edema. Magnification: 
×12,930 and bars: 500 nm
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Supporting the re-distribution of labile Zn2+ among cyto-
sol and organelles through Zn2+–transporters, the West-
ern-blotting data demonstrated that the levels of ZnT7 
and ZnT8 were increased in isolated mitochondria with 
no changes in ZIP7 and ZIP8 levels [48]. Those changes 
have positive responses to the mitochondria-targeting anti-
oxidant (MitoTEMPO) treatment of those cells, as well. 
Moreover, another transporter, the ZIP14 protein level 
was significantly low in isolated mitochondria from aged 
ventricular cardiomyocytes with a positive response to 
an application of the mitochondria targeting antioxidant 
[256].

Correspondingly, early studies pointed out a relatively 
low expressing levels of Zn2+–transporters such as ZIP7 
and ZnT7 in mammalian heart tissues [111, 112, 235]. An 
interesting study by Seo et al. focused on showing the local-
ization of ZnT2 in mammary epithelial cells (HC11) and 
they found that ZnT2 localized to the inner mitochondrial 
membrane and acts as an auxiliary Zn2+ importer into mito-
chondria [257]. In a recent study, authors also have shown 
the localization of ZIP1 on mitochondria and responsible 
for Zn2+–entry into mitochondria in HeLa cells [258]. 
Although limited data are demonstrating the importance of 
mitochondrial labile Zn2+ and the mitochondrial localiza-
tion of Zn2+-transporters, our and earlier studies empha-
sized the role of excess labile Zn2+ likeness to Ca2+, in the 
injury of cells, including cardiomyocytes, through excess 
ROS production alone and/or together with mitochondrial 
dysfunction [26, 28, 234, 259–261]. However, there are 
controversies about how high Zn2+ can affect mitochondria 
function: Excess Zn2+ could induced increases have been 
reported to induce mitochondrial Zn2+ uptake, resulting in 
a longer loss of mitochondrial membrane potential in cul-
tured neurons, besides prolonged duration of ROS produc-
tion [44], whereas other reports demonstrated that high-level 
Zn2+ did not acutely depolarize mitochondria [262, 263]. 
Besides, a high Zn2+ could induce a clear depolarization in 
mitochondrial membrane potential parallel to high ROS pro-
duction ventricular cardiomyocytes while high intracellular 
Zn2+ including hyperglycemic ventricular cardiomyocytes 
presented high ROS production as well as a clear depolar-
ized mitochondrial membrane potential [28, 29, 57]. All the 
above studies are calling an important question whether or 
not high labile Zn2+ is an effective inhibitor of mitochondrial 
function under any pathological stimuli, therefore, this event 
is providing an important interest to a clarification of that 
question.

The already known documents showing re-distribution 
of some Zn2+-transporters localized to the mitochondria in 
mammalian ventricular cardiomyocytes under pathological 
conditions are summarized in Table 3.

Conclusions

Considering the already shown data, it is acceptable to men-
tion the intracellular labile Zn2+ as a critical signaling mole-
cule in normal cell physiology as well as in pathophysiologi-
cal conditions, such as aging, diabetes, insulin resistance, 
or heart failure in mammalians. As mentioned previously, 
cellular Zn2+-homeostasis is tightly controlled by different 
regulatory signaling pathways including Zn2+-transporters 
alone and/or the pathways associated with Zn2+-transporters. 
In another insight, coordinated regulation of Zn2+ uptake, 
efflux, distribution, and storage in cardiomyocytes is a 
very important issue for a proper heart function in humans. 
Although experimental data clearly show the multiple bio-
logic functions of intracellular labile Zn2+ there are yet 
some controversies among them, and, therefore, none of 
them are more clear than the others to provide cardiopro-
tection in pathological cardiac tissue. Overall, here, we 
tried to document the prevalence of important relationships 
between intracellular labile Zn2+ and Zn2+-transporters, 
particularly localized to mitochondria, under physiological 
as well as under any pathological stimuli such as hypergly-
cemia, hyperinsulinemia, cardiomyopathy, heart failure, or 
aging (Fig. 2). Therefore, we first emphasized the possibil-
ity of an association between intracellular labile Zn2+ and 
Zn2+-transporters in mitochondria as therapeutic targets in 
heart dysfunction. Second, we proposed the importance of 
possible new therapeutic agents particularly targeting mito-
chondrial Zn2+-transporters, potentiality control that rela-
tionship in cardiac cells.

Table 3   The re-distribution of some Zn2+-transporters localized to 
the mitochondria in mammalian ventricular cardiomyocytes under 
pathological conditions

Here, the symbols ↑, ↓, and ↔ are representing increased, decreased 
and unchanged protein expression levels in associated pathological 
conditions (re-organized from references, 29, 48, 57, 82, 148, 159, 
179, 256). All measurements are performed in isolated ventricular rat 
cardiomyocytes. All changes are statistically significant compared to 
those of control cardiomyocytes (p < 0.05)

Types of 
proteins

Hypergly-
cemic heart 
cells

Hyper-insu-
linemic heart 
cells

Aged 
heart 
cells

Dilated/
Ischaemic/
Hypertropic
heart cells

ZIP7 ↓ ↔ ↔ ↓
ZIP8 ↓ ↔ ↔ ↔
ZIP14 ↔ ↓ ↓ ↔
ZnT7 ↑ ↑ ↑ ↑
ZnT8 ↑ ↑ ↑ ↑
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