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Abstract

Despite the availability of various treatment protocols, response to therapy in patients with

Acute Myeloid Leukemia (AML) remains largely unpredictable. Transcriptomic profiling stud-

ies have thus far revealed the presence of molecular subtypes of AML that are not

accounted for by standard clinical parameters or by routinely used biomarkers. Such molec-

ular subtypes of AML are predicted to vary in response to chemotherapy or targeted ther-

apy. The Renin-Angiotensin System (RAS) is an important group of proteins that play a

critical role in regulating blood pressure, vascular resistance and fluid/electrolyte balance.

RAS pathway genes are also known to be present locally in tissues such as the bone mar-

row, where they play an important role in leukemic hematopoiesis. In this study, we asked if

the RAS genes could be utilized to predict drug responses in patients with AML. We show

that the combined in silico analysis of up to five RAS genes can reliably predict sensitivity to

Doxorubicin as well as Etoposide in AML. The same genes could also predict sensitivity to

Doxorubicin when tested in vitro. Additionally, gene set enrichment analysis revealed

enrichment of TNF-alpha and type-I IFN response genes among sensitive, and TGF-beta

and fibronectin related genes in resistant cancer cells. However, this does not seem to

reflect an epithelial to mesenchymal transition per se. We also identified that RAS genes

can stratify patients with AML into subtypes with distinct prognosis. Together, our results

demonstrate that genes present in RAS are biomarkers for drug sensitivity and the prognos-

tication of AML.
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Introduction

Leukemia, lymphoma and multiple myeloma are the three main types of highly heterogeneous

hematological malignancies that are derived from myeloid and lymphoid cell lineages [1].

Acute myeloid leukemia (AML) is characterized by abnormal expansion of immature myeloid

cells and their accumulation in the bone marrow and blood, interfering with normal cellular

growth [2]. AML is a highly aggressive cancer with poor prognosis. It is also the most common

type of acute leukemia in adults. Treatment strategies and success rates vary depending on

many factors, including the subtype of AML, prognostic factors, age and general health status

of the patient [3]. Standard treatment regimens based on patient stratification include the

combination of chemotherapeutics such as Cytarabine, Daunorubicin and Etoposide with or

without radiotherapy. However, high heterogeneity of clinical outcomes in AML patients sug-

gests that current classifications fail to distinguish patient subgroups sufficiently [4].

A not so well studied protein network in the context of AML is the Renin-Angiotensin Sys-

tem (RAS). RAS is composed of several gene products which play a critical role in regulating

blood pressure, renal vascular resistance and the fluid/electrolyte balance [5, 6]. The idea of a

local RAS operating independent of the circulating RAS was brought into light by demonstrat-

ing localized RAS elements in organs other than liver (angiotensinogen), kidney (renin) and

lung (ACE). Localized RAS elements were found in many organs such as the brain, blood ves-

sels and heart [7, 8]. It is predicted that locally produced angiotensins have important homeo-

static functions and may contribute to local tissue dysfunction and diseases [8]. The presence

of local RAS specific to the hematopoietic bone marrow microenvironment was reported for

the first time in 1996 [9]. Major RAS molecules have been identified in the bone marrow

microenvironment, such as renin, angiotensinogen, angiotensin receptors and angiotensin

converting enzymes (ACEs) [10]. Locally active bone marrow RAS affects important stages of

physiological and pathological blood cell production through autocrine, paracrine and intra-

crine pathways [11, 12]. Local bone marrow RAS peptides control the development of hemato-

poietic niche, myelopoiesis, erythropoiesis, thrombopoiesis and other cellular lineages [13–

19]. Local RAS is also active in the primitive embryonic hematopoiesis phase [20–23]. The

presence of renin, ACE, angiotensin II (Ang-II) and angiotensinogen in leukemic blast cells

has been demonstrated, and local bone marrow RAS has been shown to play a role in the

development of neoplastic malignant blood cells [24–26].

Establishing a role for genes involved in the development and biology of cancers, as prog-

nostic and chemotherapeutic markers, is one of the most effective and successful approach

used in the classification of malignancies. Thus, here we aimed to define AML subgroups

based on expression of RAS genes. We also aimed to test if the resulting tumor subtypes differ

in their responses to drugs and to demonstrate distinct prognostic profiles.

Materials and methods

In silico
Datasets. Cancer Genome Project (CGP) gene expression data (E-MTAB-783) [27, 28]

was downloaded from ArrayExpress website (https://www.ebi.ac.uk/arrayexpress/), and drug

screening data [29] was downloaded from the CGP database. Microarray dataset GSE12417

[30], corresponding to AML patients, was downloaded from the National Center for Biotech-

nology Information (NCBI) Gene Expression Omnibus (GEO) database. The training cohort

of 163 patients in GSE12417 [30] was used for our analyses since this was the same microarray

platform as the one used for CGP.
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Data normalization and variance analysis. CGP gene expression data was normalized by

the RMA method using the BRB-Array Tools software [31].

In order to choose the RAS genes that would be used in real-time PCR for validation stud-

ies, we first aimed to choose the most variable genes that would likely give detectable fold dif-

ferences in vitro by PCR. Analysis of variance was performed using all 39 probesets

corresponding to the 25 genes in the RAS and genes with at least 0.8 of variance. Above these

thresholds, the mean expression was at least 5.5 and the log fold difference between min to

max was above 3 for all probesets. Thus, nine probesets corresponding to eight genes (CTSG,

CPA3, AGT, ANPEP, IGF2R (two probesets), RNPEP, ATP6AP2 and CTSA) were selected to be

used in further analyses (S1 Table).

IC50 calculation methods. In order to calculate drug response parameters such as IC50,

EC50, activity area and Amax, the growth rate of the cells were depicted as a function of drug

concentration by being modeled with non-linear logistic regression as explained in De Lean et.
al [32], which is also reported in NIH/NCGC assay guidelines [33]. While the non-linear logis-

tic regression function used to model data is used widely for cytotoxicity calculations, here for

the first time we used six different versions of this function and selected the one with the lowest

standard error rate among all for the calculation of cytotoxicity values. We name this approach

the 6-model (6M).

Thus, six different models were derived from the following non-linear logistic regression

function:

Y ¼ ða � d=ð1þ ðX=cÞbÞ þ dÞ

where Y is the percent growth of the cells, X is the arithmetic drug concentration, a is the per-

cent growth of the cells when the cells are not treated with the drug, d is the percent growth of

the cells for infinite dose, i.e. a dose for which there is no additional effect when increased, c is

the dose corresponding to percent growth exactly between a and d, and b is the Hill slope fac-

tor that is used to define the steepness of the curve fitted.

The following are the conditions required for the generation of 6-models:

1. 3-Parameter model: Curves were fitted without using Hill slope factor b.

2. 3-Parameter Top 100 model: Curves were fitted without using Hill slope factor b and with

a = 100.

3. 3-Parameter Bottom 0 model: Curves were fitted without using Hill slope factor b and

with d = 0.

4. 4-Parameter model: Formula is used as it is.

5. 4-Parameter Top 100 model: Curves were fitted with a = 100.

6. 4-Parameter Bottom 0 model: Curves were fitted with d = 0.

Six different drug response parameters are calculated out of the fitted curves as follows:

• IC50: Value of X when Ŷ = 50%

• IC90: Value of X when Ŷ = 90%

• IC95: Value of X when Ŷ = 95%

• EC50: Value of X when Ŷ = a+d

• Amax: a − d
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• Activity Area: SŶX, (sum of Ŷs for each 0.01 increment of X fitted), where Ŷ is the predicted

value of Y by the curve fitted.

With the 6M approach we recalculated IC50 values that were also included in the raw CGP

data for the 17 AML cell lines treated with four drugs (ATRA, Cytarabine, Etoposide and

Doxorubicin) using an in-house R script “SixModelIC50 V3.r” (https://github.com/

muratisbilen/6-Model_IC50_CalculationV3.git).

These drugs were selected as we obtained AML chemotherapy treatment protocols from

the Department of Hematology, Hacettepe University and compiled a list for all drugs in these

protocols. Among these only ATRA, Cytarabine, Etoposide and Doxorubicin were present in

the CGP database.

We referred to the recalculated IC50 data as 6M IC50 and performed a Pearson r correla-

tion analysis between CGP IC50s and recalculated 6M IC50s to test the compatibility.

In addition, IC50 values were calculated using the 6M approach on the data obtained from

in vitro analysis in which nine AML cell lines were treated with Doxorubicin and Etoposide.

Linear regression analyses. We performed correlation analysis between expression values

of the eight genes and drug data (both CGP IC50 data and 6M IC50 data) individually. To

identify if multiple genes can be used to better identify the relationship between gene expres-

sion and drug sensitivity data, linear regression analyses were performed using the Minitab 17

software (https://www.minitab.com). Seventeen AML cell lines from the CGP database were

either randomly divided into two groups, the discovery group (12 cell lines) and the test group

(five cell lines), or chosen manually so that the sensitivity range of cells in both groups spanned

as large variance as possible. To generate a linear regression model for each drug (ATRA,

Cytarabine, Etoposide, Doxorubicin), IC50s of the discovery cell line group obtained either

from CGP or recalculated as 6M IC50, and expression of the eight RAS genes which were

selected from variance analysis, were used as predictors. As a measure of the response variable

variation explained by each linear regression model, we used the adjusted (adj.) R2 values. To

test consistency of the linear regression models generated with the eight genes, we replicated

the random divison of groups ten times and reported the average of the adjusted R2.

Furthermore, to identify a minimal gene list for the prediction of chemosensitivity, the dis-

covery group was used to fit a model explaining the drug response using “best subsets” func-

tion of the software, which runs all possible regression models with one variable, two variables

and so on, based on a list of predictors, enabling the user to choose a smaller set of predictors

that can explain the response. The subset with the highest R2 (adj.) was selected as the best

model. Regression formula of the best models (y = ±a + [n1 × x1] ± [n2 × x2] ± [n3 × x3] ± [n4

× x4]. . .) were applied for the test group of each drug. In the regression formula y (predicted

IC50 values) were calculated where a and n are the constant values, x: gene expression values

of the 12 cell lines in the discovery group. Also, the goodness of fit measure Sy.x were com-

puted by Graphpad. Sy.x is a standard deviation of the residuals that here has been used to

describe the difference in standard deviations of CGP IC50 and 6M IC50 versus predicted

IC50s. It is a goodness-of-fit measure used to show how well our predicted IC50s fit with CGP

and 6M IC50 values. All the correlations were calculated with Graphpad software as Pearson’s

r and p values.

Hierarchical clustering analysis. Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/

cluster/software.htm) [34] and Java Treeview (http://jtreeview.sourceforge.net/) [35] software

were used for hierarchical clustering analysis with mean standardized gene expression values

for each dataset. Hierarchical clustering was performed by clustering both genes and arrays

using Euclidian distance as similarity metric and complete linkage as clustering method.
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Gene sets enrichment analysis—GSEA. Gene set enrichment analysis was performed

using the GSEA guideline (https://www.gsea-msigdb.org/gsea/index.jsp) [36].

Briefly, dataset E-MTAB-783 [27, 28] has 22277 probesets IDs and these were collapsed

into 13321 genes. For genes with more than one probeset, one with the highest expression was

selected. “C5_all Gene ontology v6.1 database” was used for the analysis which has gene sets

that contain genes annotated by the same GO term. We used default filtering criteria in GSEA

for gene set sizes, which includes genesets with sizes between 15–500. After applying this filter,

analysis was performed for 4081 gene sets.

Mutation analyses. Mutation data of AML cell lines was downloaded from Genomics of

Drug sensitivity in Cancer database (https://www.cancerrxgene.org/downloads/bulk_

download) [37]. 14 out of the 17 AML cell lines used in our analyses were available. Seven

genes which were mutated in at least three AML cell lines were analyzed further.

In vitro

Cell lines and cytotoxicity experiments. HEL92.1.7 (2111706), and QIMR-WIL

(86030601) cell lines were purchased from Sigma Aldrich (St. Louis, Mo., USA), KASUMI-3

(CRL-2725), GDM-1 (CRL-2627) and CESS (TIB-190) cell lines were purchased from ATCC

(Virginia, USA) and P31/FUJ (JCRB0091), NOMO-1 (IFO50474), KASUMI-1 (JCRB1003)

and SKM-1 (JCRB0118) cell lines were purchased from JCRB Cell Bank (Osaka, Japan). Cell

lines were authenticated by manufacturers, all cell lines were morphologically checked by

microscope and routine mycoplasma testing was performed by PCR. HEL92.1.7, GDM-1,

CESS, P31/FUJ and NOMO-1 were cultured and maintained in RPMI-1640 medium

(Sigma-Aldrich, R0883 (St. Louis, Mo., USA)) supplemented with 10% fetal bovine serum

(FBS) (Sigma-Aldrich, F6178 (St. Louis, Mo., USA)), 1% penicillin-streptomycin (Sigma-

Aldrich, 11074440001 (St. Louis, Mo., USA)), and 1% 200 mM L-glutamine (Sigma-Aldrich,

G7513 (St. Louis, Mo., USA)). KASUMI-1, SKM-1 and KASUMI-3were cultured in RPMI-

1640 medium but with 20% FBS. QIMR-WIL was cultured in DMEM medium (Sigma-

Aldrich, D6546 (St. Louis, Mo., USA)) but with 10% FBS, 1% penicillin-streptomycin, and

1% 200 mM L-glutamine. All cell lines were cultured at 5% CO2 and 37 ˚C in a humidified

incubator.

Doxorubicin (D1515) and Etoposide (E1383) were purchased from Sigma-Aldrich

(St. Louis, Mo., USA) and were dissolved in DMSO. Cell viability was measured using CellTi-

ter-Glo reagent (G7572, Promega, Fitchburg, Wisconsin, USA). 7000 cells/well in 90 μl

medium were plated in each well of a 96-well plate. Cells were treated with six different con-

centrations of Doxorubicin or Etoposide separately (20, 10, 2, 1, 0.2, 0.1 μM). After 72 hours of

drug treatment, cells were treated with CellTiter-Glo reagent and the luminescence signal was

then recorded with a microplate luminometer (Turner Designs, CA, USA). All drug treatment

experiments were repeated three times. Growth percentages were calculated for each drug and

cell line, and cytotoxicity values were calculated using the 6M approach.

qRT-PCR. AGT, ANPEP, ATP6AP2, CPA3, CTSA and IGF2R genes’ expression was quan-

tified using SYBR ™ Green master mix (Bio-Rad, #1725150, (USA)). PCR reactions were run

under cycling conditions according to manufacturer’s instructions. GAPDH was used as a ref-

erence gene in all reactions. qRT-PCR relative gene expression data was calculated using ddCT

method [38].

Using qRT-PCR relative gene expression data, predicted IC50 values were calculated with

the formulas generated by linear regression analyses of in silico data using qRT-PCR based

expression values as predictors. Primers used in this study are shown in Table 1. GAPDH was

used as endogenous control.
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Clinical data validation

Log Rank with Multiple Cutoffs (LRMC) and survival analysis. In regression analysis,

four formulas were generated for Doxorubicin and Etoposide using both CGP and 6M IC50

data. IGF2R, CTSA, ATP6AP2 are common in three of the four formulas except for 6M IC50

data for Etoposide. Therefore, these genes were chosen to test relationships with clinical

outcome.

Clinical data were obtained from the training cohort of the GSE12417 [30] dataset (AML

Cooperating Group 1999). In the AMLCG 1999 cohort, patients were treated with TAD: Thio-

guanine, Cytarabine and Daunorubicin, or HAM: Cytarabine, Mitoxantrone protocols fol-

lowed by the TAD protocol. We used an in-house R script (https://github.com/muratisbilen/

LRMC.git) (Log Rank Multiple Cutoff, LRMC) by which log-rank test-based p-values associ-

ated with hazard ratio (HR) could be obtained using all possible cutoff values representing

each sample in a given dataset and best cutoff is selected as in [39, 40]. Using this approach, we

selected best cutoffs for IGF2R, ATP6AP2 and CTSA genes to be used for clinical correlation

studies and Kaplan-Meier plots.

Patients with gene expression lower than cutoff, for each gene individually, were labeled as

‘Low’ (low expression) and higher than cutoff were labelled as ‘High’ (high expression). Uni-

variate cox regression analyses were performed and Kaplan-Meier graphs were drawn using

SPSS Statistics 19 (IBM, Chicago, IL, USA).

Additionally, the expression of all these three genes (IGF2R, CTSA and ATP6AP2) was eval-

uated together as good and bad prognostic groups. Patients were grouped as “Good” if they

have high expression levels of IGF2R and CTSA and low expression levels of ATP6AP2 defined

by expression value cutoffs in previous analysis. Rest of the patients were grouped as “Bad”.

Then Kaplan Meier survival analysis was performed for these groups.

Results

Discovery of RAS drug sensitivity biomarker genes

The RAS consists of the 25 genes, corresponding to 39 probesets in Affymetrix HG-U133A, a

microarray platforms used in the Cancer Genome Project (CGP) [27, 28]. For the 17 AML cell

lines, both drug cytotoxicity and gene expression data are available in the CGP database [27,

28]. We focused only on genes which showed high variation in expression for further valida-

tion and therefore, selected nine probesets (eight genes) as described in the methods section

(S1 Table). We recalculated IC50 values using the 6M approach applied to raw CGP cytotoxic-

ity data (see Materials and methods). Using Pearson correlation we observed strong correla-

tions between CGP IC50 and 6M IC50 for drugs widely used in AML (Cytarabine, Etoposide,

Doxorubicin) but not for ATRA (S2 Table). To identify biomarkers of chemosensitivity, we

Table 1. Primer sequences are for selected genes.

Gene Name Forward Primer Reverse Primer

AGT GGCCAGCAGCAGATAACAACC AACTGGGAGGTGCATTTGTGC

ANPEP CGTTCTCTCTGCCTGTGAGC AGGCCGTTCATTGTCCATCG

ATP6AP2 GATCCTTGTTGACGCTCTGC CTTGCTGGGTTCTTCGCTTG

CPA3 TGCCCTCTGTTTGGAATAAGCC GCTGGGTCCAAACTTCACTTGG

CTSA CTCTACCGAAGCATGAACTCCC TACTTCACTAACCAGGGCCG

IGF2R_probe1 CTCCCACCCAGTGAGAAACG TCGTCATGGAAGGACACCAG

IGF2R_probe2 GGTGTTCTTATTCTGGCGGC CAAACAAGCCAGCCAAACCG

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

https://doi.org/10.1371/journal.pone.0242497.t001
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calculated Pearson correlation between gene expression and IC50 values obtained from CGP

and generated by 6M approach. We thus identified six gene/drug cytotoxicity correlations

which were significant with CGP IC50 values, and seven significant correlations with 6M IC50

values. Four gene/drug associations were common to both analyses (S3 Table). Linear regres-

sion analysis was then performed to test whether the combined expression analyses of genes

could correlate better with drug sensitivity data or not. Thus, we generated discovery and test

groups. Each group include a wide range of cell line IC50 values as possible. Linear regression

models for drug sensitivity prediction were generated for the discovery group (12 cell lines)

using expression data of highly variant eight genes and IC50 values obtained from CGP and

6M IC50 of four drugs in Minitab 17. Then, obtained results tested with the validation group

(five cell lines). The models generated with combined expression analyses of the eight genes

resulted in high R2 (adj) values for Etoposide, Doxorubicin and Cytarabine but no model

could be generated for ATRA (S4 Table). As independent datasets with drug sensitivity data

for these compounds do not exist, we utilized a cross-validation method to test the robustness

of the proposed models by generating the discovery and test groups 10 times, with 12 and five

cell lines, respectively. The average of 10 R2 values generated from discovery groups was calcu-

lated for both CGP and 6M IC50s. Our results showed that the 10 random models of sensitivity

to Doxorubicin had an average R2 above 85% for both CGP and 6M IC50s, but R2 decreased

slightly for models of sensitivity to Etoposide while R2 values highly decreased for models of

sensitivity to Cytarabine (S4 Table) when compared to those generated for cell lines that were

manually selected. We therefore, focused on Doxorubicin and Etoposide for further analyses.

We then aimed to identify the minimal number of genes that needed to be included in com-

binations into the models that would give the highest correlation using the ‘best subsets func-

tion’ of Minitab. The software selected three genes/probesets for Doxorubicin when either

CGP and 6M IC50 values were used and, four and five genes/probeset combinations for Eto-

poside using CGP and 6M IC50 values, respectively; all together corresponding to a total of six

genes (AGT, ANPEP, ATP6AP2, CPA3, CTSA and IGF2R (two probesets)) (S5 Table), when the

analysis was performed with the discovery group. Applying the resulting models to the test

group showed the reliability of all models. As shown in Fig 1, the goodness of fit measures (R

sq. and Sy.x) were 0.9 and 0.21 for Doxorubicin as modeled using 6M IC50 data and 0.89 and

0.34 when we used CGP IC50 values. Similarly, for Etoposide, these two measures were 0.78

and 0.34 for 6M IC50 and 0.77 and 0.57 for CGP IC50 values.

In vitro validation of biomarker genes

We next asked if the linear regression models generated in silico could predict in vitro cytotox-

icity. For this purpose, we determined gene expression values by qRT-PCR for the six RAS

genes (AGT, ANPEP, ATP6AP2, CPA3, CTSA and IGF2R (two probesets)) and used these to

predict in vitro IC50 values obtained for Etoposide and Doxorubicin calculated with 6M

approach for nine AML cell lines (see Materials and methods section). Correlation analysis

showed that in silico and in vitro gene expression data were highly concordant except for

CTSA (r: >0.7 and p-value <0.05) (S6 Table). We applied normalized gene expression values

obtained in vitro to the in silico generated linear regression models (using four regression for-

mulas) (S7 Table). Thus, utilized linear regression formulas with qRT-PCR gene expression

data showed a good correlation with in silico data for Doxorubicin but not Etoposide (Table 2).

Biological features of drug sensitive and resistant cells

Cell lines sensitive to Etoposide and Doxorubicin were almost identical (S1 Fig). To determine

molecular mechanisms underlying differential response to Etoposide and Doxorubicin, we
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Fig 1. Reliability of Doxorubicin and Etoposide sensitivity predictions in linear regression models generated using the 12 AML cells. Linear

regression models were generated using the discovery group and applied to the test group to predict sensitivity values. Reliability of sensitivity

predictions was measured with goodness of fit test for Doxorubicin 6M IC50 (A) resulting 0.9 R sq. and 0.21 Sy.x Doxorubicin CGP IC50 resulting (B)

0.89 R sq. and 0.34 Sy.x Etoposide 6M IC50 resulting (C) 0.78 R sq. and 0.34 Sy.x Etoposide CGP IC50 resulting (D) 0.77 R sq. and 0.57 Sy.x with 90, 95,

and 99% confidence intervals. Black dots represent cell lines used for discovery group, and red dots for the test/validation group.

https://doi.org/10.1371/journal.pone.0242497.g001

Table 2. Pearson’s correlation analysis between in vitro 6M IC50 values and predicted IC50 values from CGP /

6M IC50 linear regression formulas.

Applied formulas Pearson’s r p-value

Etoposide (CGP) 0.1271 0.7446

Etoposide (6M IC50) -0.0579 0.8825

Doxorubicin (CGP) 0.7107 0.0319

Doxorubicin (6M IC50) 0.6925 0.0387

Predicted IC50 values obtained from linear regression formulas generated with 6M IC50 and CGP IC50 values

showed high correlation with in vitro IC50s obtained from cytotoxicity experiments for Doxorubicin but not for

Etoposide. For prediction of IC50s, normalized qRT-PCR gene expression values were used in the linear regression

formulas.

https://doi.org/10.1371/journal.pone.0242497.t002
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performed gene set enrichment analyses (GSEA) with sensitive and resistant subgroups for

Gene Ontology (GO) gene sets. Several gene sets were significantly enriched among sensitive

and resistant cell lines (FDR q-value<0.25). Gene sets enriched in sensitive cells with a FDR q-

value of lower than 0.25 included TNF-receptor interacting, and response to type I IFN stimu-

lus; while gene sets such as regulation of TGF-beta production and FN-binding were enriched

in resistant cells suggesting a mesenchymal phenotype (S2 Fig and S8 Table).

To determine if the differentially expressed genes could be reflecting Epithelial-Mesenchy-

mal Transition (EMT), we compared E-Cadherin (epithelial marker) and Vimentin (mesen-

chymal marker) expression using t-test, between sensitive and resistant cell groups. EMT is the

process that epithelial cells lose the apical-basal polarity and cell adhesion, and transform to

invasive mesenchymal cells [41]. It is known to play an important role in biological and patho-

logical processes such as cancer progression, metastasis and drug resistance [42–44]. In our

analysis, E-cadherin and Vimentin expression were not significantly different between sensi-

tive and resistant groups defined in S1 Fig (p>0.1) (S3 Fig).

Then, in order to understand whether the mutational profile is involved in sensitivity to

Doxorubicin, we analyzed mutational data of sensitive, intermediate and resistant groups of

AML cell lines (see Materials and methods). Although we have a small sample size, especially

in the resistant group (n = 2), we observed that both of the resistant cell lines are NRAS and

P53 mutant, whereas all of the sensitive cell lines (n = 5) were wild type for these genes. How-

ever, these results need to be validated in larger sample sizes to be conclusive (S9 Table).

RAS genes are prognostic biomarkers for AML

We then asked if the RAS gene expression could help prognosticate AML patients. For this

purpose, we utilized the training set within the GSE12417 [30] dataset, including 163 samples

of bone marrow or peripheral blood mononuclear cells from adult patients with untreated

acute myeloid leukemia. Patients in this cohort were also-treated with TAD protocol which

contains Daunorubicin, which is also used as the starting material for semi-synthetic

manufacturing of Doxorubicin. We found that high expression of genes IGF2R and CTSA
were both associated with better overall survival, while the opposite was true for ATP6AP2
when patients were classified in either “High” or “Low” groups based upon LRMC cutoffs for

each gene separately (see Materials and methods section) (Fig 2). We then stratified patients

into “Good” and “Bad” prognosis groups using the best cutoff values obtained for these three

genes as explained in the method section. As shown in Fig 3, it was revealed that there was a

striking difference in overall survival in the groups that were predicted as "Good" and "Bad".

The "Good" group showed better survival than the "Bad" group. Since the patients were all

treated with Daunorubicin, these data suggest that the expression pattern of these genes was

able to identify patients which are responders of this therapy.

Discussion

RAS’ local presence in the marrow affects the most important stages of physiological and path-

ological blood cell proliferation, and also has important roles in the development of blood can-

cers. It has been shown that RAS plays important roles in drug resistance to chemotherapeutic

agent in addition to angiogenesis, invasion and proliferation [9, 24, 45–47]. Inevitably, most of

these processes are interdependent. Most of the increased metastasis and invasion occurs due

to an active RAS results in angiogenesis [45, 48, 49]. AT1R upregulation in ovarian cancer and

increased expression of AT1R and ACE in prostate cancer, and AGTR1 in breast cancer; local-

ized RAS presence in gastric cancer and its correlation with tumor spread and progression;

demonstrate strong associations of RAS with various cancers. Irregularity of RAS components
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in cancer is strongly associated with increased angiogenesis and metastasis, and these parame-

ters are associated with poor prognosis [50–54].

Gene expression profiling has revealed various AML subtypes related to diagnosis, therapy

response and prognosis [55, 56]. Although gene expression profiling has not yet been inte-

grated into clinical practice, this is expected to happen in near future.

In our study, we focused on RAS genes and identified their association with Doxorubicin

and Etoposide sensitivity. We also show that RAS genes can be used to stratify AML patients

into groups with distinct prognoses. Similar to our findings, low expression of IGF2R in non-

small cell liver cancer has been associated with poor prognosis and high expression in bladder

cancer has been associated with good prognosis [57, 58]. Although high CTSA expression was

associated with poorer outcome in breast ductal carcinoma in situ, it was also found to sup-

press invasion and metastasis of colorectal cancer, suggesting tissue-specific differential roles

[59, 60]. Recent studies linked ATP6AP2 up-regulation to the progression of glioma and colo-

rectal cancer, due to its roles in aberrant activation of the Wnt/beta-catenin signalling pathway

[61, 62]. ATP6AP2 was also shown to be a key component of the pro-angiogenic/proliferative

arm of the RAS, which plays a role in the growth and spread of endometrial cancer [63]. Com-

pared to the presence in the lysosome, it is found more in the cell membrane. Thus, it is clear

that in this way it induces TGF-beta pathway activation. IGF2R is located in the membrane of

organelles and is responsible for the transport to lysosome, and its intracellular functions have

Fig 2. Log Rank Multiple Cutoff (LRMC) plots and Kaplan Meier curves for dataset GSE12417. (A) LRMCs of

IGF2R (Probeset: 201392_s_at), CTSA (Probeset: 200661_at) and ATP6AP2 (Probeset: 201444_s_at). Graphic shows

log rank based p values in the y axis for the “high” and “low” expression groups generated by all possible expression

based cutoffs shown on the x axis (for details see Materials and methods). HRs above one and below one are shown

with red and blue colors for specific cutoffs, respectively. Vertical dotted lines show 25th, 50th and 75th percentiles and

horizontal dotted line shows significance cutoff 0.05 (-log10(p) = 1.301). From LRMC graphs, we selected cutoffs

7.077, 11.247 and 11.773 for IGF2R, CTSA and ATP6AP2 respectively which are highlighted in figure with red circle.

Patients were divided into high and low groups based on these cutoffs. (B) Kaplan Meier plots for patients classified in

high and low expression based on LRMC cutoffs. Patients classifed in high expression group of IGF2R and CTSA

showed better overall survival when compared with low expression group and high expression group of ATP6AP2

showed worse survival when compared with low expression group. For all survival plots, overall survival time is shown

in days for 163 AML patients. Table at the bottom shows number of patients in each group, median survival for each

group and Log rank p value for Kaplan Meier analysis.

https://doi.org/10.1371/journal.pone.0242497.g002
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not yet been clearly identified. CTSA is a protease found in the lysosome. The fact that these

three genes function together in the lysosome suggests that lysosomal functions can contribute

to cell sensitivity. ATP6AP2 gene was found to cause disruption of V-ATPase formation and

defects in the lysosomal glycosylation and autophagy [64]. Supportively, Doxorubicin has been

reported to cause autophagy induced cell death in AML cells [65, 66].

Fig 3. Combined classification using IGF2R, CTSA and ATP6AP2 expression. Patients were grouped as “Good” if they have high expression levels of

IGF2R and CTSA and low expression levels of ATP6AP2 defined by expression value cutoffs in Fig 2. Rest of the patients were grouped as “Bad”.

Kaplan Meier plot shows “Good” group showed better survival when compared with “Bad” group as expected. Table at the bottom shows number of

patients in each group, median survival for each group and Log rank p value for Kaplan Meier analysis.

https://doi.org/10.1371/journal.pone.0242497.g003
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GSEA revealed that sensitive cells were correlated with TNF-receptor interacting and

response to type I IFN gene sets and resistant cells were correlated with regulation of TGF-beta

production and FN-binding gene sets in AML, suggesting a mesenchymal phenotype.

A good and reliable subgrouping which can predict Doxorubicin sensitivity in AML was

performed with the ATP6AP2, IGF2R, and CTSA gene combination. For those analyses, we

utilized a Daunorubicin treated cohort, which is used as the starting material for semi-syn-

thetic manufacturing of Doxorubicin. Therefore, the combination of these genes which can

predict the sensitivity of Doxorubicin in AML patients may, therefore, be confirmed ex vivo.

The mutational analyses performed in this study had a small sample size with only two

resistant cells. Therefore more conclusive results would be reached when this type of analysis

is performed with larger sample sizes, or when mutational profiling is performed in patients

treated with Doxorubicin, which may shed light on future studies.

Conclusions

As a result, we identified IGF2R, CTSA and ATP6AP2 gene biomarkers, which can subgroup

AML patients into distinct good and bad prognostic groups. ATP6AP2 was associated to resis-

tance and IGF2R and CTSA were associated to sensitivity for Doxorubicin in silico and in vitro.

In future studies, it is important to investigate whether these genes can be used for personal-

ized treatment and improve the effectiveness of treatments.

Supporting information

S1 Fig. Hierarchical clustering of AML cell lines by sensitivity profiles for Doxorubicin

and Etoposide. The analysis reveals sensitive (six cell lines-green), intermediate (eight cell

lines-orange) and resistant (three cell lines-red) subgroups for the 17 AML cell lines. Sensitiv-

ity to Doxorubicin and Etoposide is highly concordant in three subgroups. Green indicate low

expression, orange indicate intermediate expression and red indicates high expression.

(TIF)

S2 Fig. Comparative analysis of differentially enriched gene sets among drug sensitive and

resistant cell lines. (A) Plots showing gene sets enriched in sensitive cells, including genes

interacting with TNF-receptor and genes affected in response to type I IFN stimulus. (B) Plots

showing gene sets enriched in resistant cell lines, including genes having role in regulation of

TGF-B production and genes interacting selectively and non-covalently with Fibronectin.

(TIF)

S3 Fig. Expression levels of E-cadherin and Vimentin genes in AML cell lines. RMA nor-

malized gene expression values of CGP microarray data (y-axis) were used to determine EMT

status of sensitive and resistant AML cell lines (x-axis) defined in S1 Fig. VIM: Vimentin

(black bars), CDH1: E-cadherin (white bars). n.s. (not significant).

(TIF)

S1 Table. Expression variance of RAS genes in AML cell lines. RMA normalized gene

expression values of 25 RAS genes were used to analyze variance, standard deviation (SD),

mean and min-max difference among cell lines. Gene names is shown along with probe set ID.

(XLSX)

S2 Table. Pearson correlation analysis between CGP IC50s and 6M IC50s. IC50 values

recalculated according to 6M approach using CGP raw cytotoxicity measurements were used
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to calculate Pearson correlation analysis with CGP IC50 values. Strong correlations are

observed for all drugs except for ATRA.

(PDF)

S3 Table. Pearson correlation analysis between CGP gene expression data and CGP / 6M

IC50s for 17 AML cell lines. Eight genes expression data (nine probesets) was used to calcu-

late correlation (as R2 coefficient of determination) with IC50 values of four drugs (ATRA,

Cytarabine, Etoposide, Doxorubicin) from CGP database along with recalculated data with

6M approach. Highlighted values with green and red indicate significant correlation in nega-

tive and positive manner respectively.

(PDF)

S4 Table. Linear regression analysis between expression values of nine probesets and CGP

/ 6M IC50s for the discovery group (12 cell lines) and also for the ten times randomly

divided different discovery groups (12 cell lines). Adjusted R2 values were calculated in

Minitab 17 with eight genes (nine probesets) for four drugs using CGP gene expression data

and CGP / 6M IC50 values of the 12 AML cell lines. High correlations are observed with Eto-

poside and Doxorubicin (bold, for Etoposide R2 > 90%, for Doxorubicin R2 > 80%). Averages

of adjusted R2 values of ten randomly divided groups were calculated in Minitab 17 with eight

genes (nine probesets) for four drugs using CGP gene expression data and CGP / 6M IC50 val-

ues of the 12 AML cell lines. High correlation is observed with Doxorubicin and fine with Eto-

poside (bold, for Doxorubicin R2 > 85%, for Etoposide R2 > 60%). Asterisk represents the

analysis in which Minitab could not perform linear regression analysis.

(PDF)

S5 Table. Generation of linear regression models using CGP gene expression data and

CGP / 6M IC50 data of the discovery group (12 AML cell lines) for drug sensitivity predic-

tions. (A) Individual genes and gene combinations were used to generate linear regression

models using IC50 values of Doxorubicin and Etoposide from CGP and 6M IC50. Highest cor-

relation is observed in IGF2R/ATP6AP2/CTSA combination with Doxorubicin CGP and 6M

IC50 values. And, highest correlation is observed in IGF2R/ATP6AP2/CTSA/CPA3 combina-

tion with Etoposide CGP and in ANPEP/ATP6AP2/CTSA/CPA3/AGT combination with Eto-

poside 6M IC50 values. (B) Regression formulas for gene panels with highest correlations.

(PDF)

S6 Table. Relative expression values of ATP6AP2, IGF2R (two probesets), CTSA, CPA3,

AGT and ANPEP genes in nine AML cell lines and Pearson’s correlation analysis for six

genes between CGP gene expression data and in vitro qRT-PCR gene expression data of

nine AML cell lines. (A) Expressions of all genes was normalized to GAPDH expression. (B)

ATP6AP2, IGF2R (two probesets), CPA3, AGT, and ANPEP gene expression data obtained

from CGP in silico and in vitro qRT-PCR expression data from nine cell lines show significant

correlations with in vitro qRT-PCR expression data with the exception of CTSA.

(PDF)

S7 Table. In vitro and predicted IC50s (from CGP and 6M IC50 linear regression formulas)

of Doxorubicin and Etoposide for nine AML cell lines. In vitro IC50 values were obtained

from cell viability measurements of the cell lines that are treated with six different concentra-

tions of Doxorubicin and Etoposide separately (20, 10, 2, 1, 0.2, 0.1 μM). Predicted IC50s were

calculated using the four formulas generated (with CGP / 6M IC50s) in the linear regression

analysis with the normalized gene expression data obtained from qRT-PCR.

(PDF)
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S8 Table. Gene sets enriched in (A) sensitive cell lines, and (B) resistant cell lines.

(PDF)

S9 Table. Mutational data of sensitive, intermediate and resistant groups of AML cell

lines. Seven genes which are mutated in at least three AML cell lines were included to examine

the relationship between mutational status and drug sensitivity. Red: mutations that cause

change in aminoacid sequence, grey: unkown status of aminoacid change, change at the DNA

level; blue: wild type.

(PDF)

S1 File.

(XLSX)
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